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ABSTRACT

Recent experiences in wiilizing the globai optimization
methodology, based on  polynomial and ncural  network
techniques. for Tuid machinery design are summarized. Global
optimization methods can utilize the information coilected trom
various sources and by different tools. These methods olfer
multi-criterion optimization, handle the existence of multiple
design points and trade-offs via insight into the entire design
space. can casily perform tasks in parallel. and are olten
ciicctive in filtering the noise intrinsic o numerical and
expermmental data, Another advantage s that these methods do
not need to caleulate the sensitivity of” cach design variable
locally  owever. a successful application of the global
optimization method nceds to address issues related to data
requirements with an increase in the number of design variables.

and miethods tor predicting the maodel performance. Examples of

applications.  selected  from  rocket propulsion  components.
including a supersonic turbine and an injector clement. and a
turbulent How diftuser arc used 10 ilustrate the uselulness ol the
2lobal optimization method.

L. INTRODUCTION & OVERVIEW

Modern  computational  and - experimental  {luid
Jynamics tools have matured to a stage where they can provide
~ubstantial insight into cngincering processes imvolving tluid
Hows. Phis can help analyze the Huid physies as well as improve
e design ol practical  devices. in particular, rapid  and
continuous development in the technology ot {fluid machinery
demands that new design concepts be regularly proposed to
meet goals for increased performance. robusiness and satety
while concurrently decreasing cost. These stringent goals are
forcing consideration of design variables over ranges and in
combinations not typically employed, thereby increasing the
design complexity. Objective and efficient evaluation of these
new and complex designs can be facilitated by development and
implementation of systematic optimization methods. To date.
the majority o the ctfort in design optimization of fTuid
dynamics has relied on gradient-based scarch algorithms (Baysal
and Eleshaky 1992, Lambert et al. 1995, Reuther ct al. 1999).
These methods work iteratively through a sequence of focal sub-
jrroblems. which approxiqate phjcctivc and constraint functions
for a sub-region of the design space. ¢.g., by lincarization using
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computed sensitivitics. Major challenges for these optimization
approaches are the robust and speedy computation of sensitivity
coefticients (Elbanna and Carlson 1994, Dadonc et al. 2000).
Polynomial-Based Response Surface

Recently we have witnessed increasing interests in
wtilizing the global optimization methods. which avoids the need
to compute design sensitivities altogether. In this regard, the
response surface methodology (RSM) has gained attention
because minimum cffort is required for software interfacing.
which facilitates the integration of analysis and design codes.
RSM is particularly suitable for subsystem approximation within
multidisciplinary design optimization (Sobieszczanski-Sobieski
and Haftka 1997) because it can utilize information collected
from various sources and by different tools. It can also offer
mufti-criterion optimization. handle the existence of multipie
design selections and related trade-ofts, and address the noises
intrinsic to numerical and experimental data. A main advantage of
RSM lies in its robustness and intelligibility. Robustness and the
smoothness of the approximations in noisy environments are
achieved by performing extra analyses compared to the number
of regression cocetticients. This is a dJistinct advantage over
derivative-based search algorithms. which may encounter
difficulties in the presence of spurious local optima. This
generality allows the consideration of intormation at varying
levels of breadth (i.e.. number of design variables) and depth (i.c..
details of the design space). The significance of the individual
design parameters can also be assessed Jirectly by the global
model. Another teature favoring RSM is its suitability for paralicl
computation.

The polynomial-based response surfaces are commonly
cmployed in global optimization. An n" order polynomial in each
dependent variable is generated by standard least-squares
regression (Myers and Montgomery 1995). Polynomial
coefficients are obtained from a linear regression scheme. In
addition to polynomials. ncural networks (NN) can also be used
lo construct a response surface model. With a polynomial
approach, there is a cost associated with RSM. The computational
demands grow fast with increasing number ot design variables,
which is termed as the “curse of dimensionality”. For example. to
construct a sccond-order polynomial of V' design variables, the
number of coetficients to be tixed are (N=1)(N+2)/(2!). A cubic
require  (N+I)IN+2)iN+3; (3! coeflicients. In



addition. the predictive capability of RSM is greatly influenced
by the distribution of the sampling points in the design space
(Unal et al. 1997, 1998).

Statistical techniques are also available for identifying
polynomial coefficients that are not well characterized by the
data. For example, a stepwise regression procedure based on t-
statistics is often used to discard terms and improve the
prediction accuracy. The t-statistic, or t-ratio. of a particular
coefficient is given by the value of the coetficient divided by the
standard crror of the coefficient. The quality of {it of different
surfaces can be evaluated by comparing the adjusted root mean
square ¢rror. ¢, defined as:

Here ¢; is the crror at i point of the training data. 1 is the

number of training data points and #, is (he number of

coelticients, The measure of error given by g, ix normalized
weount for the degrees of Ireedom in the model Thus o,
accounts tor the nominal eftect ot higher order terms providing a
hetter overall comparison among the ditferent surlace fits.

The accuracy of the models in representing the design
space is further gauged by comparing the values of the objective
function at test design points. different from those used to
senerate the 11 with the empirical solution. The root mean
~quare error. ¢ lor the test set is given by

i this cquation ¢ is the error at e @7 fest pomt and i the
total number ol test points.

Uypically. the entire design data are divided into tvo
sroups. The major portion. called the training set. s used to 11x
the global modcel. and the minor portron. called the test set. is
swed o test the Nldelity of the model In short. the variation
between the response surface (RS) and the training data, uas

given by Eq.(1), is normally used to judge the performance of

e 1L As indicated in Eqg. (2) additional test data can be
smploved to evaluate the performance of different polynomials
sner design points not used during the training phase

Tud  dvnamies applications. the RSN has oen
spphied o a growing number ol cases. including high speed civil
transport (Knill ¢t al. 1999), airfoil shape optimization {Rai and
Madavan 1998, 2000, Madavan et al. 1999). dilfuser shape
optimization (Madsen ¢t al. 20000, preliminary design of
supersonic turbine. (Papila et al. 2000). and injectors (Shyy ct al
1999, Tucker ¢t al. 1998).

Dara Selection in Design Space

In order to reduce the size of” the duta needed for
comstructing the global model. it is important to apply a sound
srategy tor sclecting design points (Hattka ¢t ol 1998) This
strategy is referred to as the design of experiments. For example,
face centered composite design (FCCD) is a popular approach
sor selectine the training data to wd the construction of a
response surtace model. “n o three-dimensional space. FCCD
creales a design space composed ot eight corners ol the cube.

one at the center of each of the six faces and one at the center of
the cube. Therefore, this yields /2¥+2N+/] points, where N is the
number of design variables. Due to this scaling rule, FCCD is
more effective when the number of design variables is modest,
say, no larger than 5 or 6, but not a good choice for problems with
large number of design variables.

The orthogonal array (OA) is a fractional factorial
matrix that assures a balanced comparison of levels of any factor
or interaction of factors. Because the points are not necessarily at
vertices, the analytical tools can be more robust using the
orthogonal array. The OA can significantly reduce the number of
data required to construct a global model. To further reduce the
data size, one can choose to rank the different point selections
according to D-optimality criterion. This approach minimizes the
generalized variance of the estimates. and can reduce the
sensitivity of the response surface with respect to noise. In Papila
et al. (2000). alternative representations of the design space are
performed {or supersonic rocket turbine design by using FCCD
coupled with the D-Optimal treatment und OA. FCCD produces
T7-data for the single-stage turbine with six design variables,
With 1 design variables for the two-stage wrbine design. FCCD
vields 2.071-data. For three-stage turbine having 15 design
variables, FCCD generates 32.799-data based on the formula of
2Y+2N+/, demonstrating the “curse of dimensionality”. For such
cases methods like OA can be applied to reduce the number of
Jata in an cflficient way. .

To enhance the clfectiveness of the RSM. as
demonstrated by Papila et ale 2000y, & multi-level approach is
very usetul. One can construct o global response surface and
dentty regions expected to be of finorable pertormance. Then,
in these selected regions. one can retine the global model and
wenuly the optimal design points with substantially  higher
Seeuracy.

Newral Networky

As already mentioned. NN technigues have also been
used o generate swrrogate models representing data obtained
Irom simulations based on compliex numerical and experimental
schemes. Relevant papers by Carpenter & Barthelemy (1993).
Nikolaidis ¢t al, (1998). Greenman and Roth (1998). Madavan <t
al. (1998). Rai and Madavan (1998. 2000). Shyy et al. (1999).
Papila et al. (1999) and Vaidvanathan ot al. (2000) include
comparative studics of polynomials and neural networks for data
handling. NN is highly [Texible in tunctional form and hence can
srrer aantticant porential tor complen dunctions that cannot be
adequatedy approximated by polynominls. NN can be eltectively
dxed in two ways. irst. it can be used in conjunction with RSM.
Ior example. in complex regions of the surface. NN can be
trained using the existing data and then can be used to generate
additional data thereby enhancing the available information in
that particular area. Shyy et al. (1999) have demonstrated that this
approach can help improve the fidelity of the polynomial-based
response surface model. Alternatively, NN can generate data that
can be directly used by the optimizer. With cither a polynomial-
based response surface method or a neural network method. the
design optimization is conducted by first constructing a global
representation of the design space. followed by a search for
optimal designs.

While back-propagation neural networks (BPNN) have
been largely employed in reported studies for NN-based design
‘optimization. the radial-basis neural networks (RBNN) have



advantages that deserve to be investigated more closely. RBNN
are multi-layer networks with hidden layers of radial basis
transfer function and a linear output layer. The training of the
network is a cyclic process and the weights and biases of the
nodes of the network are adjusted until an accurate mapping is
obtained. RBNN may require more neurons than BPNN, but
they can be designed faster than the latter. Various parameters
need to be evaluated to design an RBNN. For example, a spread
constant is needed as a design parameter; i.c., the radius of the
basis in the input space 1o which each neuron responds. One can
design a network with zero error on the training vectors by
generating as many radial basis neurons in the network as there
arc input vectors. A more compact design in terms of network
size is obtained by generating one neuron at a time to minimize
the number of ncurons required. At cach cycle/epoch, a neuron
is added to the network until a user specified error goal is
achicved or until the network has generated the maximum
number of neurons possible. In such a case, an error goal and
the spread constant need to be specilied. The test data helps to
evaluate the accuracy ot the netwarks with varying spread
constants. Thus. the test data are part ot the evaluation process
and help in oselecting the best NNU The NN technigue can
encounter problems due to the nature ot the data, as well as the
construction of the neuron characteristics. [f the training dataset
is nowsv. and the network is trained without proper filtering
features, false optima due o over-fitting will occur. False
optima can also be introduced when inadequate training data scl
is used.

In this paper. we Summarize our recent experiences in
utlizing the  global  optimization  mcethodology related 1o
polynomial-based RSM and NN. Then, we highlight three
physical examples: a supersonic turbine and an injector clement
for rocket propulsion applications. and shape optimization ol a
turbulent Now diffuser. To reach a suceesstul optimal desien.
one olten needs to consider the issues related to (1) selection off
appropriate representation of the design space for constructing
the global model. (i) employment ol the statistical and testing
touls 1o assess appropriate global models. (ifi) multi-criterion
optimization. {iv) existence of multiple design selections and
retated trade-ofts. and (v) consideration of noiscs intrinsic 1o
numerical and experimental data. There is no space 10 address
Al these matters in this paper. but detailed information can be
found in the references cited.

PHYSICAL APPLICATIONS

Objective Functions

When attempting w0 optimize two or more diiferent
abjective functions. contlicts between them arise because ol the
different relationships they have with the design variables. To
solve this problem, a multi-objective approach is often
employed. Here, competing objective functions are condensed to
a single function by generating a composite objective function.
The maximization of the composite function cifectively
uptimizes the individual functions. The use of a response surface
tvpe ol global model makes it straightforward to do such a
multi-criterion optimization. Without response surfaces. it would
have been a highly challenging task.

To handle such a multi-criterion optimization task, an
average of some form is normally ased 1o represent the
composite lunction. For Samnle, for the injector, the goal is 0
maximize the energy release efficiency, £RE while minimizing

the chamber wall heat flux, Q. Shyy ¢t al. {1999) and Tucker et al
(1999) used a geometric mean to combine these two objectives
and maximized the resulting composite objective function, D.
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D= (( dige) '(dQ )’ )/ : &)

where the normalized function such as ERE, takes the form:

FRE- 4
dypy, = (—ﬁj 4

where B is the target value and A is the lowest acceptable value.
Figure | illustrates the roles of s and ¢ in the desirability function
for the case of maximizing a response. The desirabilities with
s<</! imply that a product necd not be close to the response
target value, B, to be quite acceptable. 1Towever, a large value of s
implies that the product is necarly unacceptable unless the
response is close to B

Fhe other way of expressing the composite function is
0 use a weighted sum of the objective function. The composite
desirability function can then be expressed s

D= f+af,+ (3)

where D is the compaosite objective lunction and /5 are the non-

normalized objective  functions.  The are  dimensional

parameters that control the importance of cach objective function.

In the case ol the supersonic turbine a weighted sum of the two

objectives. the ctticiency, 7. and the weight. W, has been used.

Phe expression. in the contest of the wrbine gives the incremental

salue ot the payvioad, dpay. with the change in IFand 5. The goal

15 1o maximize Jdparv. which in wrn results i maximizing 7 and

minimizing H and hence the puyload is maximized.

D= dpayv = e -1y <1 00-1 111 (H)

where 7= the caleulated ctticiency

11, = the baseline efficiency

it"= calculated weight

I¥, = the bascline weight

¢, = the amount of payioad increment capacity lor any
cliiciencey gamn

e bascline etficiency and weight are obrained with
the existing design knowledge without benefiting  from an
optimization strategy. The goal of the optimization is to identify
wrbine contigurations capable of delivering higher payload.

Turbulent Flow Diffuser

Figure 2 highlights the use of a response surface
approximation tor the optimum shape of a two-dimensional
diffuser. The goal was to accomplish maximum pressure recovery
by optimizing the wall contours. The flow is incompressible and
fully turbufent with a Reynolds number ot 107, based on the inlet
throat half-width, D. The overall geometry is defined by the ratio
ol infet and outlet arcas. and the ditfuser lenath to height ratio. In
-this study the length to height ratio is ixed at 3.0, and the arca
ratio at 2.0. The shape of the diffuser wall is designed [or



optimum performance, with five design variables represented by
B-splines. The CFD model is based on the full Reynolds-
averaged Navicer-Stokes equations, with the k-t two-cquation
turbulence model in closure form. At the inlet of the flow
domain, a uniform flow distribution is specified. Detailed
discussion of this study can be found in Madsen et al. (2000). As
illustrated in Fig. 1, within the fidelity of the analysis tool, there
are often multiple design points that meet the design objectives.
It is interesting to note that different diffuser shapes are found to
vield cssentially the same performance. The response surface
model is ideally suitable for such situations.

Supersonic Turbine

Next, we summarize our recent ctfforts in optimizing
the preliminary design of a supersonic turbine suitable for a
reusable launching vehicle (RLLV) propulsion system. Single-,

two- and three-stage turbines are considered with the number of
design variables increasing in accordance with the number of

stages. There are 2 types of design variables:

Geometric input

. mean diameter (/)

» lastrotor annulus arca (1,,,)

¢ Dblade height ratio between the Y vane and the fast rotor
blade

e vanc and blade axial chords

Pevtormance 1 ariables

. RPN

e number ol stages

. hlade row reaction

. work split (ifmore than | stage 15 imvestigated)

I the work presented by Paptla et al. (2000), there are
6. T and 13 design vartables tor the single-. two- and three-
stage wrbines. respectively. Inaddition. there are 2 structural
constraints, the blade centrifugal swress and the disk soess. Fhe
hlade centrifugal stress was constramed by a limit placed on the
product ol the blade exit annulus area and the RPM N, The
disk stress was constrained by a limit placed on the pitchiine
wetocity (the product of the RPM and the mean radius). Al the
design variables involved in the design process are normalized
b ther respective baseline values.

Far rocket ongime  applications. aNimizing  the

chicle payload tor a given wrbine operating condition ix the
altimate objective. Any gain in wrbine cliiciency wilf he
cellected 1 a reduced propellant consumption, ihus an merease
m payload. However, higher turbine performance usuaily entails
muitistage designs. which are heavier. To ascertain required
predictive capability of the RSM, a two-level domain refinement
approach has been adopted in the course of optimization (Papila
et al. 2000). First. a response surface was constructed for the
antire design space. Since the accuracy ol the response surface
was less than satisfactory. u domain refinement was then
«dopted based on the initial optimization,

An inspection of the optimal designs indicates that the
two-stage turbine gives the best payload performance for this
application. As the number of the stage increases. we see that
2Alicieney improves \\|1I'|L;;L|1C,\\L‘ighl increases afso. According
to the formula tor dpay. the improvement in ctficiency from

two- o three-stage cannot compensate the penalty from higher
weight. As shown in Figure 3, the mean diameter, speed, and the
exit blade area exhibit distinct trends. Specifically, the diameter
decreases. speed increases, and annulus arca decreases with
increasing number of stages. It is interesting to observe that none
of the selected values of the design parameters are toward the
limiting values assigned, indicating that the optimal designs result
from compromises between competing parametric trends. For
such cases. a formal optimizer such as the present response
surface method is very useful. The results indicate that the
cfficiency rises quickly from single stage to two stages but the
increase is much less pronounced with three stages. A single-
stage turbine performs poorly under the engine balance boundary
condition possibly due to a significant portion of fluid kinetic
energy being lost at the turbine discharge of the single-stage
design due to high stage pressure ratio and the high-energy of the
working fluid, which is predominantly hydrogen. Figure 4
summarizes fitting/training and testing results of RBNN and
polynomial-based approximations for Jdpay of a 2-stage turbine,
The training data are selected hased on the orthogonal array
approach. There are |1 design variables. 249 wraining data (OA).
and 78 testing data in both oniginal and refined design spaces.
Centered on the opumal design point predicted  using  the
information gathered for the entire design space. the reduced
design space has 20% of the range originally assigned to cach
design variable. Inall plots. a perfect (it will result in a 43-degree
line.

Fhe cltectiveness ot the multi-level RSM approach can
he observed in this figure by comparing the original and refined
Jesign space plots. While RBNN s obviously more accurate for
the training data duc to more number ol adjustable parameters
associated with the number of neurons. its predicting capability.
as retlected inthe testing data plots. may not be as superior.
Nevertheless, RBNN s auractive because it has the flexibility w
nandle complen characteristics of a response surlace and s
straightforward 1o train because the computation is hased on the
finear regression analysis.

Swirl Coaxial Injector Element

The injector considered is tor the combustor of an
advanced fiquid rocket engine. Different injector concepts have
been proposed for this purpese. including shear coaxial tvpe.
impinging type. and swirl tvpe (Shay et al. 1999, Tucker et al.
F999). The swirl coaxial clement has been used somewhat
sparingly ;o the LS. Boe has been widely used in Russin
hecause ol its reported ability to perform well over a farge throttle
sange (GHE and Nurick 1976). Figure 3 shows that the GO,
lowing in the center post of the element. exits from the clement
with both radial and axial velocity compenents. This effect is
achieved by introducing the GO, tangentially into the center post
through small slots. The empirical design methodology of
Culhoon et al. (1973) uses the oxidizer pressure drop. 4P,. fuel
pressure drop. 17, combustor length. L, and the tull cone
swirl angle. @, as independent wariables, Due to stability
considerations for this injector design. the A2, range is set to 10-
20% of the chamber pressure, while the AP, range is sct 1o 2-20%
of chamber pressure. The combustor Iength, defined as the
distance from the injector to the end of the barrel portion of the
chamber ranges from 2-8 inches. The 1ull cone swirl angle is

wlowed (o vary trom 30-90°. The dependent variables modeled

are LRE (energy release cfficiency. a measure of clement



performance). wall heat flux, Q,. injector heat flux. @, relative
combustor weight, W, and relative injector cost. (.

With the multi-criterion optimization, onc can assess
the eftect of certain aspects of the design during the optimization
process. The set of results shown in Table | facilitate the
illustration. The baseline results in Table | are obtained by
placing equal weight for all design variables. Alternatively, in
Case I, we place more emphasis on reducing the wall and
injector face heat fluxes. Desirability functions for both of these
variables are given increased weights (5 and 10, respectively).
Since lower heat fluxes tend to increasc component life,
weighting these two variables is equivalenl to cmphasizing a
life-tvpe issue in the design. Since O, is already at its minimum
value. it remains fixed. As expected. @ is decreased which
decreases the value ot @, by almost 35%. The lower value of ©
also produces a lower £RE. Both propellant pressure drops and
the combustor length are increased to mitigate the drop in ERE.
The increases in L., and 47, cause an increase in W and G,
respectively. The emphasis on lile extracts the expected penally
on performance. Additionally. for the current model. there are
also slight weight and cost penalties.

I'he resuits for Case 2 are obtained by emphasizing
maxmuzation ol LRE and minimization ol 1, with desirability
weightings of 10 and 5, respectively. Increased weighting for
these two variables is equivalent to emphasizing a thrust o
weight goal for the injector/chamber. The relative chamber
length is shortened to slightly lower 11, ERE is maximized by
mercasing the GO, oswirl angle by a factor of almost 2.3 and
increasing 172, by over 33 %, The value of FRET increases by
aver one pereent. s noted carlier. mcereasing 7 leads 1o
increased inector heat tlux, For this case, emphasts on thrusi
and weight tends 1o have an adverse allect on (), Relative cost,
¢ . tor the current model. is also increased signilicantiy. Figure
noorters a visual tdlustration of the rends exhibited in various
~cenantos between a swirl type and an impinging type ingector.
While the qualitative leatures between the Iwo injectors are
consistent, the present optimization model aliows the inspection
of the parametric variations directly.

3. CONCLUSIONS

The global optimization method can be particularly
clfective with either a polynomial-based response surlace or a
acural network when information from different computational,
Apermental. and analvtical sources needs to be assembled. 1o
TS PARCT. WE SUHMMALIZS our recent experienees i utilizing the
opunuization methodology for optimizing tasks refated to the
preumimary design of @ supersonic wrbhine, the design ol an
injector element. and the shape optimization of o turbulent ow
diffuser. A successful optimal design ollen needs to address the
issues related to the selection of appropriate training data for
constructing the global model, employment of the statistical and
testing tools to identify appropriate global models, multi-
criterion optimization. existence of multiple design sclections
wmd related trade-olfs, and consideration of noises intrinsic to
numerieal and experimental data.
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Table 1. Gifect oremphasizing fife and performancee issues on optimal injector design,
Independent Variable | Constraints  [Results Baseline|  Constraints Results Case 1 | Constraints | Results Case 2
DP, 100-200 104 100-200 200 100-200 200
DP; 20-200 20 20-200 32 20-200 14
[ com -3 34 28 3.6 2.8 29
Q 30-90 .0 30-90 30.0 530-90 72.0
Dependent Variable | Baselin Variable Lnphasis on Emphasis
Weight Life onThrust 1o
Height
ERE | 95.7 i 93.3 10 96.7
O, i 0.596 5 039 | | 0.596
Qiny ! 10.5 10 6.9 1 22.6
W 1 0.98 1 0.99 2 0.96
Cou [ 0.76 | 0.7 l . 0.94
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